This is just a quick address of an important law in logic. De Morgan's Laws demonstrate the relationship between two basic binary gates, AND and OR. Here they are:
NOT(A AND B) = (NOT A) OR (NOT B)
NOT(A OR B) = (NOT A) AND (NOT B)
These laws have an equivalent function in Kleene's version of ternary logic using the negation gate and the Min and Max two-input gates. This is another reason I liked Kleene's version of ternary logic. Not all of them adhered to De Morgans Laws.
Neg(A Min B) = (Neg A) Max (Neg B)
Neg(A Max B) = (Neg A) Min (Neg B)
There you have it.
Discussions
Become a Hackaday.io Member
Create an account to leave a comment. Already have an account? Log In.