Arduino Based Quadcopter | Joystick remote
To make the experience fit your profile, pick a username and tell us what interests you.
We found and based on your interests.
Hey, what's up, Guys! Akarsh here from CETech.
This is the second part of Arduino based drone series. In this part, we are going to make a Transmitter and Receiver pair of our own which is based on Arduino as well. In the first part of the series, we made the Flight Controller of our Drone which you can check out from here. In this tutorial, we are going to make two different circuits. The first one is for the Transmitter which will act as the Remote Controller of the Drone. We will send the controlling commands to our drone using this Transmitter. The second one is the Receiver Circuit which will be placed on our Quadcopter and will be connected to the Flight Controller. The Receiver circuit will continuously receive the signals that will be sent by our Transmitter and it will pass that signal to the Flight Controller which according to that signal will control the motors ultimately controlling the drone.
Both the circuits will be Arduino-based we will be using Arduino UNOs for the Transmitter and Receiver Circuit but other than that we will use NRF24L01 Radio Transceiver modules for the transfer of data between Transmitter and Receiver. Other than these we will use Joystick modules to give the commands.
So let's get to work straight away.
You must check out PCBWAY for ordering PCBs online for cheap!
You get 10 good-quality PCBs manufactured and shipped to your doorstep for cheap. You will also get a discount on shipping on your first order. Upload your Gerber files onto PCBWAY to get them manufactured with good quality and quick turnaround time. Check out their online Gerber viewer function. PCBWAY takes care of its customers a lot that's why they offer reward points with every purchase that you make from them these reward points can be redeemed for various useful items from their gift shop.
The nRF24L01 is a wireless transceiver module, meaning each module can both send as well as receive data. They operate at the frequency of 2.4GHz, which falls under the ISM band, and hence it is legal to use in almost all countries for engineering applications. The modules when operated efficiently can cover a distance of 100 meters (200 feet) which makes it a great choice for all wireless remote-controlled projects. The module operates at 3.3V hence can be easily used with 3.2V systems or 5V systems. Each module has an address range of 125 and each module can communicate with 6 other modules hence it is possible to have multiple wireless units communicating with each other in a particular area. Hence mesh networks or other types of networks are possible using this module. So if you are looking for a wireless module with the above properties then this module would be an ideal choice for you. The NRF24L01 module works with the help of SPI communications. These modules can either be used with a 3.3V microcontroller or a 5V microcontroller but they should have an SPI port.
The advantages of using the NRF24L01 Transceiver module are:-
Though there are a lot of advantages that give this module an edge over other modules, there are some drawbacks of using this module as well which can be easily dodged but we need to keep them in check while using these modules. Some of those drawbacks are:-
But even after these drawbacks, this module is a great choice for applications like ours. To get some more knowledge about this module, you can have a look at its datasheet from here.
Create an account to leave a comment. Already have an account? Log In.
Become a member to follow this project and never miss any updates