Close

Pulley Downgearing Update and Tweaks

A project log for My Advanced Realistic Humanoid Robots Project

Building bio inspired realistic looking humanoid robots to do chores and sports and stuff.

larryLarry 10/30/2024 at 09:230 Comments

I wound up my 6lb test Hercules PE braided fishing line onto the previous pulley system setup only to find out that the pulley could only handle about 21 inches of fishing line wound onto it before it started to come dangerously close to overfilling the pulley. The aim is to have plenty of the plastic disc overlapping the fishing line even when it is wound up fully to one side because that plastic disc acts as the guide to keep the line in its proper channel. I want at least 32:1 mechanical advantage out of this downgearing so if I want my final output to be 1" then the first pulley has to be able to wind 32" of fishing line onto it comfortably. So I realized at least the first pulley has to be a few more millimeters increased in diameter. So I had to rebuild the thumb tacks arrangement to accommodate these changes and make that first pulley bigger.

With this increased size first pulley, I realized I'm getting what looks to be 7:1 mechanical advantage from just the first pulley alone! At least initially when it starts. As the fully wound up pulley gets winched in by the motor, the relative size differential gets smaller which means it will speed up and the torque will be less than the starting torque and increasingly so as the size differential decreases. This will create a natural sort of acceleration effect and high initial power and gradually less power. I think these side effects of this system seem to be quite good but I'll know for sure in testing. The next steps will be to wind up the reverse direction of the first pulley and start connecting the first pulley to the second pulley and so on. I may not even need all 5 pulleys but we'll see. With the first pulley being already 7:1, if the remaining 4 are 2:1 say, then we'd have 7:1, 14:1, 28:1, 56:1, 112:1 so 112:1 would be the final output. That seems quite overkill and perhaps will be too slow. Although very strong. The motor outputs about 0.42 lb on average so .42*112= 47lb! Now the lever of the joint itself makes you lose mechanical advantage due to the fulcrum location etc so it would drop down to say 15lb but my finger individual joint flexion power is only like 5-7lb so that's double mine. So a bit overkill. So I might skip using one of the 5 pulleys. Having it there is nice though just in case we wanted to trade speed for power for some of them we'd then use that one as an optional strength boost we can tap into in the future if we want to trade speed for strength so I might just leave it in the design even if I don't use it just yet. In testing I may find I prefer to use it afterall. Nice to have that option if needed.

Discussions