Close

MultiDock hacking?

A project log for STFDock

Turning a Griffin MultiDock 2 into a self-contained OpenSTF device lab

paul-nichollsPaul Nicholls 04/24/2017 at 06:060 Comments

Closer inspection of the MultiDock's daughter boards reveals that the USB hub is connected to port 1 on the TS3USB221A. Per the datasheet, we should be able to tie the switch pin low in order to lock it to port 1. As the TS3USB221A is in a 10-Pin µQFN package, soldering directly to it would be a massive pain in the posterior. Luckily, the trace was reasonably easy to follow - a via right next to the pin drops it through to the back of the board, where it runs up to another via right next to pin 6 on the PIC. Each of the PIC's pins is almost as big as the entirety of the TS3USB221A, making it a much friendlier target for modding - and luckily, there's an ICSP header right next to the PIC, with a ground pin within easy reach.

Lifting the PIC's pin 6 from the board and soldering a jumper wire in its place, connected to the ICSP ground pin, does appear to have locked the TS3USB221A to port 1 - and one phone which didn't work with the unmodded MultiDock now happily works when plugged into the Orico hub via a modded daughter board. Unfortunately, that's not all that's needed; some devices seem to cause the PIC to switch something on the power rails (understandable, since it's trying to switch the port over to a dedicate charging port controller), resulting in the device's USB connection 'bouncing' continuously.

It's possible that the MultiDock's hub and/or daughter boards are broken, as I picked the MultiDock up second hand (well below full retail price) - and I've noticed a red LED blinking constantly on the MultiDock's main board, just beside the first USB2514B hub controller IC. With this in mind, and the lack of apparently quick-and-easy hack to make it work how I'd like it to, it's back to my original plan of removing the original electronics and replacing the whole lot.

Discussions

Rich text editor