the idea came from this Applied Science Video: Electroluminescent paint and multi-channel control circuit 21 Nov 2018 starting at 11:25
there is a link to amazon for a element – and it is not available to delivery to germany 🙁 so i went on with some help of friends and found
voltage | current | power@ 6V | power@ 12V | link |
---|---|---|---|---|
12V | 5,8A | 17W | 70W | HALJIA 12V 70W Wired MCH Metal Ceramic Heating Plate Heating Element 70mm x 15mm |
24V | 4,6A | 7W | 27W | Haljia 24V 110W Wired MCH Metal Ceramic Heating Plate Heating Element 70mm x 15mm |
12V | 4A | 12W | 24W | Haljia 12 V48 W Wire MCH Metal Ceramic Heating Plate Heating Element 40 mm x 40 mm |
24V | 4 | 24W | 48W | Haljia 24 V96 W WIRED MCH Metal Ceramic Heating Plate Heating Element 40 mm x 40 mm |
to get an idea of how much power i actually need i had a look at the small commercial IR-Heaters and Hot-Plates – they all have about 800W:
180mm * 235mm = 42300 mm² = 423 cm² a = 60mm * 60mm = 3600 mm² = 48 cm (1x4) b = 60mm * 80mm = 4800 mm² = 48 cm (2x2) c = 60mm * 90mm = 5400 mm² = 54 cm² (1x6) d = 60mm * 120mm = 7200 mm² = 72 cm² (1x8) e = 120mm * 60mm = 7200 mm² = 72 cm² (2x4) f = 120mm * 90mm = 10800 mm² = 108 cm² (2x6) g = 120mm * 120mm = 14400 mm² = 144 cm² (2x8) 423 cm² == 800W 1 cm² == x x = 800W * 1cm² / 423cm² = 1,89W a = 800W * 36cm² / 423cm² = ~68W (1x4) b = 800W * 48cm² / 423cm² = ~91W (2x2) c = 800W * 54cm² / 423cm² = ~102W (1x6) d = 800W * 72cm² / 423cm² = ~136W (1x8) e = 800W * 72cm² / 423cm² = ~136W (2x4) f = 800W * 108cm² / 423cm² = ~204W (2x6) g = 800W * 144cm² / 423cm² = ~272W (2x8) 30x40mm: ~23W/module 60x15mm: ~17W/module
then i calculated the resistance of the found element to check on what wattage i can do at what voltages:
U = R*I P = U*I → P = U*(U/R)
(i added these *guesses* in the table above)
So I decided to go with the 70x15mm 24V model. and will update here if i found how this works out..
and for the first test setup i will go with the concept 12V→ 27W / module so definitive more then enough..
as power supply i will use a MeanWell GST280A48-C6P (reichelt) with an fitting connector (reichelt) to get a 5V for the controller i will go with a recom R-78HB50-05 (VIN: 9-72V) and for switching the power to the heating elements i will use IRLB4030PBF – MOSFET N-LogL 100V 180A 370W 0,0043R TO220AB and to drive this a BC 550C as mentioned in this nice article: Schalten und Steuern mit Transistoren III – Mit MOSFETs höhere Ströme schalten
so when all the parts arrive i can go on.. with building.
for the Controller i plan to write it in CircuitPython and run it on an adafruit ItsyBitsyM4. and maybe later add an LCD – or use a PyBadge – for now i just want to use the arduino serial plotter or similar with an second CDC-device enabled to log the progress and the flash-drive function of CircuitPython for a text-file with the temperature-profile. i have written a request in the adafruit CircuitPython forum if there are any PID controller things out there…
Discussions
Become a Hackaday.io Member
Create an account to leave a comment. Already have an account? Log In.