#include <SparkFun_TB6612.h>
#include <Wire.h>
#include <Adafruit_Sensor.h>
#include <Arduino_Helpers.h>
#include <AH/Math/Quaternion.hpp>
#include <Adafruit_MPU6050.h>
#include "Adafruit_AHRS_Mahony.h"
#include <ArduinoBLE.h>
#define STBY D7
#define AIN1 D8
#define AIN2 D9
#define PWMA D10
const int offsetA = 1;
Motor motor1 = Motor(AIN1, AIN2, PWMA, offsetA, STBY);
unsigned long sTime;
unsigned long cTime;
#define SM_START 0
#define SM_IMU 1
#define SM_FILL 2
#define SM_DRAIN 3
#define SM_MAINTAIN 4
uint8_t cstate;
uint8_t ostate;
const int MPU1_addr = 0x68;
const int MPU2_addr = 0x69;
Adafruit_MPU6050 mpu1;
Adafruit_MPU6050 mpu2;
Quaternion q1, q2;
Adafruit_Mahony filter1;
Adafruit_Mahony filter2;
bool wristExtended = false;
const int ThresholdH = 35;
const int ThresholdL = -35;
const int numReadings = 10;
float DifferenceReadings[numReadings];
int currentIndex = 0;
float filteredDifferenceRoll;
float filteredDifferenceYaw;
float filteredDifferencePitch;
int flag;
#define BUTTON_PIN 3
int status;
int button_state_old = 0;
int flag_button = 0;
#define R1 2660
#define R2 1000
#define VDK 0.2732240437
#define BAT_FUL 11.1
#define BAT_LOW 5
#define BAT_DIS 20
#define BAT_CHARG 12
#define AN_BAT A3
#define RED_PIN D6
#define GREEN_PIN D5
#define BLUE_PIN D4
static long preMillis = 0;
uint16_t b_averages=100;
static float anBa=0;
float anBa1;
static uint16_t i_b=0;
static int flag_start = 1;
void init_sm() {
cstate = SM_START;
}
void update_sm() {
switch (cstate) {
case SM_START:
Serial.println("\nSM_CALIBRATION");
ostate = cstate;
cstate = SM_IMU;
break;
case SM_IMU:
status = digitalRead(BUTTON_PIN);
if (button_state_old == 0 && status){
button_state_old = 1;
flag_button = 1;
}
if(button_state_old == 1 && !status){
button_state_old = 0;
flag_button = 1;}
if (((filteredDifferenceRoll < ThresholdL) || flag_button) && flag) {
flag_button = 0;
Serial.println("\nSM_DRAIN");
sTime = millis();
ostate = cstate;
cstate = SM_DRAIN;
}
if (((filteredDifferenceRoll > ThresholdH) || flag_button) && !flag) {
flag_button = 0;
Serial.println("\nSM_FILL");
sTime = millis();
ostate = cstate;
cstate = SM_FILL;
}
break;
case SM_FILL:
flag=1;
motor1.drive(-255,3000);
motor1.brake();
Serial.println("\nSM_IMU");
sTime = millis();
ostate = cstate;
cstate = SM_IMU;
break;
case SM_DRAIN:
flag=0;
motor1.drive(+255,3000);
motor1.brake();
Serial.println("\nSM_IMU");
sTime = millis();
ostate = cstate;
cstate = SM_IMU;
break;
}
}
void setup() {
init_sm();
pinMode(BUTTON_PIN, INPUT);
pinMode(RED_PIN, OUTPUT);
pinMode(GREEN_PIN, OUTPUT);
pinMode(BLUE_PIN, OUTPUT);
Wire.begin();
initializeMPU(MPU1_addr);
initializeMPU(MPU2_addr);
for (int i = 0; i < numReadings; i++) {
DifferenceReadings[i] = 0.0;
}
motor1.drive(255,3000);
motor1.brake();
Serial.begin(9600);
setImu();
updateValues();
}
void loop() {
long curMillis = millis();
if (preMillis>curMillis) preMillis=0;
if (curMillis - preMillis >= 5)
{
preMillis = curMillis;
sensors_event_t a, g, temp;
mpu1.getEvent(&a, &g, &temp);
filter1.updateIMU(g.gyro.x, g.gyro.y, g.gyro.z, a.acceleration.x, a.acceleration.y, a.acceleration.z);
mpu2.getEvent(&a, &g, &temp);
filter2.updateIMU(g.gyro.x, g.gyro.y, g.gyro.z, a.acceleration.x, a.acceleration.y, a.acceleration.z);
float w, x, y, z;
filter1.getQuaternion(&w, &x, &y, &z);
q1 = Quaternion(w, x, y, z);
filter2.getQuaternion(&w, &x, &y, &z);
q2 = Quaternion(w, x, y, z);
Quaternion qprod = Quaternion().hamiltonianProduct(q1, q2.conjugated());
EulerAngles angles = EulerAngles().quat2eul(qprod);
const float piGreco = 3.14159;
float yaw = (angles.yaw / (piGreco)) * 180;
float roll = (angles.roll / (piGreco)) * 180;
float pitch = (angles.pitch / (piGreco)) * 180;
filteredDifferenceRoll = calculateMovingAverage(roll);
updateValues();
update_sm();
}
}
void setImu() {
Serial.println("Adafruit MPU6050 init MPU1!");
if (!mpu1.begin(0x68)) {
Serial.println("Failed to find MPU6050 chip");
while (1) {
delay(10);
}
}
Serial.println("MPU6050 Found!");
mpu1.setAccelerometerRange(MPU6050_RANGE_8_G);
Serial.print("Accelerometer range set to: ");
switch (mpu1.getAccelerometerRange()) {
case MPU6050_RANGE_2_G:
Serial.println("+-2G");
break;
case MPU6050_RANGE_4_G:
Serial.println("+-4G");
break;
case MPU6050_RANGE_8_G:
Serial.println("+-8G");
break;
case MPU6050_RANGE_16_G:
Serial.println("+-16G");
break;
}
mpu1.setGyroRange(MPU6050_RANGE_500_DEG);
Serial.print("Gyro range set to: ");
switch (mpu1.getGyroRange()) {
case MPU6050_RANGE_250_DEG:
Serial.println("+- 250 deg/s");
break;
case MPU6050_RANGE_500_DEG:
Serial.println("+- 500 deg/s");
break;
case MPU6050_RANGE_1000_DEG:
Serial.println("+- 1000 deg/s");
break;
case MPU6050_RANGE_2000_DEG:
Serial.println("+- 2000 deg/s");
break;
}
mpu1.setFilterBandwidth(MPU6050_BAND_21_HZ);
Serial.print("Filter bandwidth set to: ");
switch (mpu1.getFilterBandwidth()) {
case MPU6050_BAND_260_HZ:
Serial.println("260 Hz");
break;
case MPU6050_BAND_184_HZ:
Serial.println("184 Hz");
break;
case MPU6050_BAND_94_HZ:
Serial.println("94 Hz");
break;
case MPU6050_BAND_44_HZ:
Serial.println("44 Hz");
break;
case MPU6050_BAND_21_HZ:
Serial.println("21 Hz");
break;
case MPU6050_BAND_10_HZ:
Serial.println("10 Hz");
break;
case MPU6050_BAND_5_HZ:
Serial.println("5 Hz");
break;
}
Serial.println("Adafruit MPU6050 init MPU2!");
if (!mpu2.begin(0x69)) {
Serial.println("Failed to find MPU6050 chip");
while (1) {
delay(10);
}
}
Serial.println("MPU6050 Found!");
mpu2.setAccelerometerRange(MPU6050_RANGE_8_G);
Serial.print("Accelerometer range set to: ");
switch (mpu2.getAccelerometerRange()) {
case MPU6050_RANGE_2_G:
Serial.println("+-2G");
break;
case MPU6050_RANGE_4_G:
Serial.println("+-4G");
break;
case MPU6050_RANGE_8_G:
Serial.println("+-8G");
break;
case MPU6050_RANGE_16_G:
Serial.println("+-16G");
break;
}
mpu2.setGyroRange(MPU6050_RANGE_500_DEG);
Serial.print("Gyro range set to: ");
switch (mpu2.getGyroRange()) {
case MPU6050_RANGE_250_DEG:
Serial.println("+- 250 deg/s");
break;
case MPU6050_RANGE_500_DEG:
Serial.println("+- 500 deg/s");
break;
case MPU6050_RANGE_1000_DEG:
Serial.println("+- 1000 deg/s");
break;
case MPU6050_RANGE_2000_DEG:
Serial.println("+- 2000 deg/s");
break;
}
mpu2.setFilterBandwidth(MPU6050_BAND_21_HZ);
Serial.print("Filter bandwidth set to: ");
switch (mpu2.getFilterBandwidth()) {
case MPU6050_BAND_260_HZ:
Serial.println("260 Hz");
break;
case MPU6050_BAND_184_HZ:
Serial.println("184 Hz");
break;
case MPU6050_BAND_94_HZ:
Serial.println("94 Hz");
break;
case MPU6050_BAND_44_HZ:
Serial.println("44 Hz");
break;
case MPU6050_BAND_21_HZ:
Serial.println("21 Hz");
break;
case MPU6050_BAND_10_HZ:
Serial.println("10 Hz");
break;
case MPU6050_BAND_5_HZ:
Serial.println("5 Hz");
break;
}
Serial.println("MPU OK!");
delay(100);
filter1.begin(5);
filter2.begin(5);
}
void initializeMPU(int addr) {
Wire.beginTransmission(addr);
Wire.write(0x6B);
Wire.write(0);
Wire.endTransmission(true);
Wire.beginTransmission(addr);
Wire.write(0x1C);
Wire.write(0x00);
Wire.endTransmission(true);
}
void readAccelerometer(int addr, int16_t& ax, int16_t& ay, int16_t& az) {
Wire.beginTransmission(addr);
Wire.write(0x3B);
Wire.endTransmission(false);
Wire.requestFrom(addr, 6, true);
ax = Wire.read() << 8 | Wire.read();
ay = Wire.read() << 8 | Wire.read();
az = Wire.read() << 8 | Wire.read();
}
void readGyroscope(int addr, int16_t& gx, int16_t& gy, int16_t& gz) {
Wire.beginTransmission(addr);
Wire.write(0x43);
Wire.endTransmission(false);
Wire.requestFrom(addr, 6, true);
gx = Wire.read() << 8 | Wire.read();
gy = Wire.read() << 8 | Wire.read();
gz = Wire.read() << 8 | Wire.read();
}
float calculateMovingAverage(float newValue) {
DifferenceReadings[currentIndex] = newValue;
currentIndex++;
if (currentIndex >= numReadings) {
currentIndex = 0;
}
float average = 0.0;
for (int i = 0; i < numReadings; i++) {
average += DifferenceReadings[i];
}
average /= numReadings;
return average;
}
void updateValues() {
anBa1=analogRead(AN_BAT);
anBa+=anBa1;
i_b++;
if (i_b==b_averages||flag_start)
{
flag_start = 0;
Serial.println(anBa);
anBa/=b_averages;
float voltage=anBa*(3.3/1023);
voltage=voltage/VDK;
float Vin = voltage;
Serial.print("Battery: ");
Serial.print(voltage,2);
Serial.print("V (");
voltage-=BAT_LOW;
voltage/=(BAT_FUL-BAT_LOW);
anBa=voltage*100;
if (anBa<0) anBa=0;
else if (anBa>100) anBa=100;
Serial.print(anBa,1);
Serial.println("%)");
if(anBa < BAT_DIS){
digitalWrite(RED_PIN, HIGH);
digitalWrite(GREEN_PIN, LOW);
digitalWrite(BLUE_PIN, LOW);
} else if (anBa >= BAT_DIS && Vin<BAT_CHAR) {
digitalWrite(RED_PIN, LOW);
digitalWrite(GREEN_PIN, HIGH);
digitalWrite(BLUE_PIN, LOW);
} else if(Vin>=BAT_CHARG){
digitalWrite(RED_PIN, LOW);
digitalWrite(GREEN_PIN, LOW);
digitalWrite(BLUE_PIN, HIGH);
}
i_b=0;
anBa=0;
}
}
void drive(int speed);
void drive(int speed, int duration);
void brake();
void standby();
void forward(Motor motor1, Motor motor2, int speed);
void forward(Motor motor1, Motor motor2);
void back(Motor motor1, Motor motor2, int speed);
void back(Motor motor1, Motor motor2);
void left(Motor left, Motor right, int speed);
void right(Motor left, Motor right, int speed);
void brake(Motor motor1, Motor motor2);
Discussions
Become a Hackaday.io Member
Create an account to leave a comment. Already have an account? Log In.