-
Dicebag Make Code For Circuit Playground Express
05/15/2017 at 07:47 • 0 commentsIn preparing for Adafruit's new version of the Circuit Playground I started using the web browser based dev environment over at http://makecode.adafruit.com
You can find this up there at https://makecode.com/_MJjJrg9eRTmi
/* The Circuit Playground Dice Bag - CC Attribution-ShareAlike - Tom Higgins and Sons User Manual Select the type of die you would like to throw by setting the Select Switch and pressing one of the Buttons Select Switch Left and Button A = d100 Select Switch Left and Button B = d20 Select Switch Right and Button A = d12 Select Switch Right and Button B = d6 You can hold down the Button and it will flash through many tosses. Release the Button and your results will show on the Circuit Playground as two (or one) lit NeoPixel Red=Tens Place (0-9) Blue=Ones Place (0-9) Green=Tens and Ones are the same (00,11,22,33,44,55,66,77,88,99) The NeoPixels are arranged from 0 - 9 . If you are holding your Circuit Playground with the USB port facing Up 0 is the top left NeoPixel closest to the USB port 1 is to the left of that .. 4 is the bottom let NeoPixel closest to the Battery Jack 5 is the bottom right NeoPixel closest to the Battery Jack .. 9 is the top tight NeoPixel closest to the USB port */ let troll = 0 let tens = 0 let ones = 0 let switcher = 0 loops.forever(() => { music.stopAllSounds() if (input.buttonA.isPressed()) { if (switcher) { tossd12() } else { tossd100() } } else { if (input.buttonB.isPressed()) { if (switcher) { tossd6() } else { tossd20() } } } }) input.onSwitchMoved(SwitchDirection.Left, () => { switcher = 0 }) input.onSwitchMoved(SwitchDirection.Right, () => { switcher = 1 }) function tossd100() { troll = Math.random(99) prepthrow(troll) return } function tossd20() { troll = (Math.random(20)) + 1 prepthrow(troll) return } function tossd12() { troll = Math.random(11) + 1 prepthrow(troll) return } function tossd6() { troll = Math.random(6) + 1 prepthrow(troll) return } function showtoss(ones: number, tens: number) { light.pixels.clear() music.playTone((ones * 100) + 1, 50) music.stopAllSounds() if (ones == tens) { light.pixels.setPixelColor(tens, Colors.Green) } else { light.pixels.setPixelColor(ones, Colors.Blue) light.pixels.setPixelColor(tens, Colors.Red) } light.pixels.show() music.stopAllSounds() return } function prepthrow(troll: number) { ones = troll % 10 tens = troll / 10 showtoss(ones, tens) return }
-
CP Dice Bag For The Visually Impaired
08/16/2016 at 23:03 • 0 commentsMy kids play games with a friend who is visually impaired. The thought went up, can the CP speak? According to Adadfuit's example code the answer is yes...but it is a finicky beast to hear. I put the code in from their example code and worked it into the flow of the Dice Bag code. When you release the button it will not only show you the results on the Neopixels but also speak it from that teeeeny tiny speaker on the CP.
This is the first stab at a solution. I am going to try some of the other speech code to see if those are more understandable on this speaker.
Another idea was to uses beeps to give the results of the dice throw. If the speech does not pan out in testing we might go that route.
#include <SPI.h> #include <Wire.h> #include <Adafruit_CircuitPlayground.h> /* The Circuit Playground Dice Bag - CC Attribution-ShareAlike 4.0 International Tom Higgins & Sons TO select the type of die you would like to throw First put the Select Switch in the proper position Then press the proper Button Select Switch Left Button Right Button ----------------+------------+-------------+ + | d100 (0-99)| d20 (1-20) | ----------------|------------|-------------| - | d12 (1-12)| d06 (1-6) | -------------------------------------------- You can hold down the Button and it will flash through many tosses. Release the Button and your results will show on the Circuit Playground as two (or one) lit NeoPixel Red=Tens Place (0-9) Blue=Ones Place (0-9) Green=Tens and Ones are the same (00,11,22,33,44,55,66,77,88,99) The NeoPixels are arranged from 0 - 9 . If you are holding your Circuit Playground with the USB port facing Up 0 is the top left NeoPixel closest to the USB port 1 is to the left of that .. 4 is the bottom let NeoPixel closest to the Battery Jack 5 is the bottom right NeoPixel closest to the Battery Jack .. 9 is the top tight NeoPixel closest to the USB port */ const uint8_t spZERO[] PROGMEM = {0x69,0xFB,0x59,0xDD,0x51,0xD5,0xD7,0xB5,0x6F,0x0A,0x78,0xC0,0x52,0x01,0x0F,0x50,0xAC,0xF6,0xA8,0x16,0x15,0xF2,0x7B,0xEA,0x19,0x47,0xD0,0x64,0xEB,0xAD,0x76,0xB5,0xEB,0xD1,0x96,0x24,0x6E,0x62,0x6D,0x5B,0x1F,0x0A,0xA7,0xB9,0xC5,0xAB,0xFD,0x1A,0x62,0xF0,0xF0,0xE2,0x6C,0x73,0x1C,0x73,0x52,0x1D,0x19,0x94,0x6F,0xCE,0x7D,0xED,0x6B,0xD9,0x82,0xDC,0x48,0xC7,0x2E,0x71,0x8B,0xBB,0xDF,0xFF,0x1F}; //const uint8_t spONE[] PROGMEM = {0x66,0x4E,0xA8,0x7A,0x8D,0xED,0xC4,0xB5,0xCD,0x89,0xD4,0xBC,0xA2,0xDB,0xD1,0x27,0xBE,0x33,0x4C,0xD9,0x4F,0x9B,0x4D,0x57,0x8A,0x76,0xBE,0xF5,0xA9,0xAA,0x2E,0x4F,0xD5,0xCD,0xB7,0xD9,0x43,0x5B,0x87,0x13,0x4C,0x0D,0xA7,0x75,0xAB,0x7B,0x3E,0xE3,0x19,0x6F,0x7F,0xA7,0xA7,0xF9,0xD0,0x30,0x5B,0x1D,0x9E,0x9A,0x34,0x44,0xBC,0xB6,0x7D,0xFE,0x1F}; //const uint8_t spTWO[] PROGMEM = {0x06,0xB8,0x59,0x34,0x00,0x27,0xD6,0x38,0x60,0x58,0xD3,0x91,0x55,0x2D,0xAA,0x65,0x9D,0x4F,0xD1,0xB8,0x39,0x17,0x67,0xBF,0xC5,0xAE,0x5A,0x1D,0xB5,0x7A,0x06,0xF6,0xA9,0x7D,0x9D,0xD2,0x6C,0x55,0xA5,0x26,0x75,0xC9,0x9B,0xDF,0xFC,0x6E,0x0E,0x63,0x3A,0x34,0x70,0xAF,0x3E,0xFF,0x1F}; //const uint8_t spTHREE[] PROGMEM = {0x0C,0xE8,0x2E,0x94,0x01,0x4D,0xBA,0x4A,0x40,0x03,0x16,0x68,0x69,0x36,0x1C,0xE9,0xBA,0xB8,0xE5,0x39,0x70,0x72,0x84,0xDB,0x51,0xA4,0xA8,0x4E,0xA3,0xC9,0x77,0xB1,0xCA,0xD6,0x52,0xA8,0x71,0xED,0x2A,0x7B,0x4B,0xA6,0xE0,0x37,0xB7,0x5A,0xDD,0x48,0x8E,0x94,0xF1,0x64,0xCE,0x6D,0x19,0x55,0x91,0xBC,0x6E,0xD7,0xAD,0x1E,0xF5,0xAA,0x77,0x7A,0xC6,0x70,0x22,0xCD,0xC7,0xF9,0x89,0xCF,0xFF,0x03}; //const uint8_t spFOUR[] PROGMEM = {0x08,0x68,0x21,0x0D,0x03,0x04,0x28,0xCE,0x92,0x03,0x23,0x4A,0xCA,0xA6,0x1C,0xDA,0xAD,0xB4,0x70,0xED,0x19,0x64,0xB7,0xD3,0x91,0x45,0x51,0x35,0x89,0xEA,0x66,0xDE,0xEA,0xE0,0xAB,0xD3,0x29,0x4F,0x1F,0xFA,0x52,0xF6,0x90,0x52,0x3B,0x25,0x7F,0xDD,0xCB,0x9D,0x72,0x72,0x8C,0x79,0xCB,0x6F,0xFA,0xD2,0x10,0x9E,0xB4,0x2C,0xE1,0x4F,0x25,0x70,0x3A,0xDC,0xBA,0x2F,0x6F,0xC1,0x75,0xCB,0xF2,0xFF}; //const uint8_t spFIVE[] PROGMEM = {0x08,0x68,0x4E,0x9D,0x02,0x1C,0x60,0xC0,0x8C,0x69,0x12,0xB0,0xC0,0x28,0xAB,0x8C,0x9C,0xC0,0x2D,0xBB,0x38,0x79,0x31,0x15,0xA3,0xB6,0xE4,0x16,0xB7,0xDC,0xF5,0x6E,0x57,0xDF,0x54,0x5B,0x85,0xBE,0xD9,0xE3,0x5C,0xC6,0xD6,0x6D,0xB1,0xA5,0xBF,0x99,0x5B,0x3B,0x5A,0x30,0x09,0xAF,0x2F,0xED,0xEC,0x31,0xC4,0x5C,0xBE,0xD6,0x33,0xDD,0xAD,0x88,0x87,0xE2,0xD2,0xF2,0xF4,0xE0,0x16,0x2A,0xB2,0xE3,0x63,0x1F,0xF9,0xF0,0xE7,0xFF,0x01}; //const uint8_t spSIX[] PROGMEM = {0x04,0xF8,0xAD,0x4C,0x02,0x16,0xB0,0x80,0x06,0x56,0x35,0x5D,0xA8,0x2A,0x6D,0xB9,0xCD,0x69,0xBB,0x2B,0x55,0xB5,0x2D,0xB7,0xDB,0xFD,0x9C,0x0D,0xD8,0x32,0x8A,0x7B,0xBC,0x02,0x00,0x03,0x0C,0xB1,0x2E,0x80,0xDF,0xD2,0x35,0x20,0x01,0x0E,0x60,0xE0,0xFF,0x01}; //const uint8_t spSEVEN[] PROGMEM = {0x0C,0xF8,0x5E,0x4C,0x01,0xBF,0x95,0x7B,0xC0,0x02,0x16,0xB0,0xC0,0xC8,0xBA,0x36,0x4D,0xB7,0x27,0x37,0xBB,0xC5,0x29,0xBA,0x71,0x6D,0xB7,0xB5,0xAB,0xA8,0xCE,0xBD,0xD4,0xDE,0xA6,0xB2,0x5A,0xB1,0x34,0x6A,0x1D,0xA7,0x35,0x37,0xE5,0x5A,0xAE,0x6B,0xEE,0xD2,0xB6,0x26,0x4C,0x37,0xF5,0x4D,0xB9,0x9A,0x34,0x39,0xB7,0xC6,0xE1,0x1E,0x81,0xD8,0xA2,0xEC,0xE6,0xC7,0x7F,0xFE,0xFB,0x7F}; //const uint8_t spEIGHT[] PROGMEM = {0x65,0x69,0x89,0xC5,0x73,0x66,0xDF,0xE9,0x8C,0x33,0x0E,0x41,0xC6,0xEA,0x5B,0xEF,0x7A,0xF5,0x33,0x25,0x50,0xE5,0xEA,0x39,0xD7,0xC5,0x6E,0x08,0x14,0xC1,0xDD,0x45,0x64,0x03,0x00,0x80,0x00,0xAE,0x70,0x33,0xC0,0x73,0x33,0x1A,0x10,0x40,0x8F,0x2B,0x14,0xF8,0x7F}; //const uint8_t spNINE[] PROGMEM = {0xE6,0xA8,0x1A,0x35,0x5D,0xD6,0x9A,0x35,0x4B,0x8C,0x4E,0x6B,0x1A,0xD6,0xA6,0x51,0xB2,0xB5,0xEE,0x58,0x9A,0x13,0x4F,0xB5,0x35,0x67,0x68,0x26,0x3D,0x4D,0x97,0x9C,0xBE,0xC9,0x75,0x2F,0x6D,0x7B,0xBB,0x5B,0xDF,0xFA,0x36,0xA7,0xEF,0xBA,0x25,0xDA,0x16,0xDF,0x69,0xAC,0x23,0x05,0x45,0xF9,0xAC,0xB9,0x8F,0xA3,0x97,0x20,0x73,0x9F,0x54,0xCE,0x1E,0x45,0xC2,0xA2,0x4E,0x3E,0xD3,0xD5,0x3D,0xB1,0x79,0x24,0x0D,0xD7,0x48,0x4C,0x6E,0xE1,0x2C,0xDE,0xFF,0x0F}; //const uint8_t spTEN[] PROGMEM = {0x0E,0x38,0x3C,0x2D,0x00,0x5F,0xB6,0x19,0x60,0xA8,0x90,0x93,0x36,0x2B,0xE2,0x99,0xB3,0x4E,0xD9,0x7D,0x89,0x85,0x2F,0xBE,0xD5,0xAD,0x4F,0x3F,0x64,0xAB,0xA4,0x3E,0xBA,0xD3,0x59,0x9A,0x2E,0x75,0xD5,0x39,0x6D,0x6B,0x0A,0x2D,0x3C,0xEC,0xE5,0xDD,0x1F,0xFE,0xB0,0xE7,0xFF,0x03}; //const uint8_t spELEVEN[] PROGMEM = {0xA5,0xEF,0xD6,0x50,0x3B,0x67,0x8F,0xB9,0x3B,0x23,0x49,0x7F,0x33,0x87,0x31,0x0C,0xE9,0x22,0x49,0x7D,0x56,0xDF,0x69,0xAA,0x39,0x6D,0x59,0xDD,0x82,0x56,0x92,0xDA,0xE5,0x74,0x9D,0xA7,0xA6,0xD3,0x9A,0x53,0x37,0x99,0x56,0xA6,0x6F,0x4F,0x59,0x9D,0x7B,0x89,0x2F,0xDD,0xC5,0x28,0xAA,0x15,0x4B,0xA3,0xD6,0xAE,0x8C,0x8A,0xAD,0x54,0x3B,0xA7,0xA9,0x3B,0xB3,0x54,0x5D,0x33,0xE6,0xA6,0x5C,0xCB,0x75,0xCD,0x5E,0xC6,0xDA,0xA4,0xCA,0xB9,0x35,0xAE,0x67,0xB8,0x46,0x40,0xB6,0x28,0xBB,0xF1,0xF6,0xB7,0xB9,0x47,0x20,0xB6,0x28,0xBB,0xFF,0x0F}; //const uint8_t spTWELVE[] PROGMEM = {0x09,0x98,0xDA,0x22,0x01,0x37,0x78,0x1A,0x20,0x85,0xD1,0x50,0x3A,0x33,0x11,0x81,0x5D,0x5B,0x95,0xD4,0x44,0x04,0x76,0x9D,0xD5,0xA9,0x3A,0xAB,0xF0,0xA1,0x3E,0xB7,0xBA,0xD5,0xA9,0x2B,0xEB,0xCC,0xA0,0x3E,0xB7,0xBD,0xC3,0x5A,0x3B,0xC8,0x69,0x67,0xBD,0xFB,0xE8,0x67,0xBF,0xCA,0x9D,0xE9,0x74,0x08,0xE7,0xCE,0x77,0x78,0x06,0x89,0x32,0x57,0xD6,0xF1,0xF1,0x8F,0x7D,0xFE,0x1F}; //const uint8_t spTWENTY[] PROGMEM = {0x0A,0xE8,0x4A,0xCD,0x01,0xDB,0xB9,0x33,0xC0,0xA6,0x54,0x0C,0xA4,0x34,0xD9,0xF2,0x0A,0x6C,0xBB,0xB3,0x53,0x0E,0x5D,0xA6,0x25,0x9B,0x6F,0x75,0xCA,0x61,0x52,0xDC,0x74,0x49,0xA9,0x8A,0xC4,0x76,0x4D,0xD7,0xB1,0x76,0xC0,0x55,0xA6,0x65,0xD8,0x26,0x99,0x5C,0x56,0xAD,0xB9,0x25,0x23,0xD5,0x7C,0x32,0x96,0xE9,0x9B,0x20,0x7D,0xCB,0x3C,0xFA,0x55,0xAE,0x99,0x1A,0x30,0xFC,0x4B,0x3C,0xFF,0x1F}; //const uint8_t spHUNDRED[] PROGMEM = {0x04,0xC8,0x7E,0x5C,0x02,0x0A,0xA8,0x62,0x43,0x03,0xA7,0xA8,0x62,0x43,0x4B,0x97,0xDC,0xF2,0x14,0xC5,0xA7,0x9B,0x7A,0xD3,0x95,0x37,0xC3,0x1E,0x16,0x4A,0x66,0x36,0xF3,0x5A,0x89,0x6E,0xD4,0x30,0x55,0xB5,0x32,0xB7,0x31,0xB5,0xC1,0x69,0x2C,0xE9,0xF7,0xBC,0x96,0x12,0x39,0xD4,0xB5,0xFD,0xDA,0x9B,0x0F,0xD1,0x90,0xEE,0xF5,0xE4,0x17,0x02,0x45,0x28,0x77,0x11,0xD9,0x40,0x9E,0x45,0xDD,0x2B,0x33,0x71,0x7A,0xBA,0x0B,0x13,0x95,0x2D,0xF9,0xF9,0x7F}; const uint8_t spONE[] PROGMEM = {0xCC,0x67,0x75,0x42,0x59,0x5D,0x3A,0x4F,0x9D,0x36,0x63,0xB7,0x59,0xDC,0x30,0x5B,0x5C,0x23,0x61,0xF3,0xE2,0x1C,0xF1,0xF0,0x98,0xC3,0x4B,0x7D,0x39,0xCA,0x1D,0x2C,0x2F,0xB7,0x15,0xEF,0x70,0x79,0xBC,0xD2,0x46,0x7C,0x52,0xE5,0xF1,0x4A,0x6A,0xB3,0x71,0x47,0xC3,0x2D,0x39,0x34,0x4B,0x23,0x35,0xB7,0x7A,0x55,0x33,0x8F,0x59,0xDC,0xA2,0x44,0xB5,0xBC,0x66,0x72,0x8B,0x64,0xF5,0xF6,0x98,0xC1,0x4D,0x42,0xD4,0x27,0x62,0x38,0x2F,0x4A,0xB6,0x9C,0x88,0x68,0xBC,0xA6,0x95,0xF8,0x5C,0xA1,0x09,0x86,0x77,0x91,0x11,0x5B,0xFF,0x0F}; const uint8_t spTWO[] PROGMEM = {0x0E,0x38,0x6E,0x25,0x00,0xA3,0x0D,0x3A,0xA0,0x37,0xC5,0xA0,0x05,0x9E,0x56,0x35,0x86,0xAA,0x5E,0x8C,0xA4,0x82,0xB2,0xD7,0x74,0x31,0x22,0x69,0xAD,0x1C,0xD3,0xC1,0xD0,0xFA,0x28,0x2B,0x2D,0x47,0xC3,0x1B,0xC2,0xC4,0xAE,0xC6,0xCD,0x9C,0x48,0x53,0x9A,0xFF,0x0F}; const uint8_t spTHREE[] PROGMEM = {0x02,0xD8,0x2E,0x9C,0x01,0xDB,0xA6,0x33,0x60,0xFB,0x30,0x01,0xEC,0x20,0x12,0x8C,0xE4,0xD8,0xCA,0x32,0x96,0x73,0x63,0x41,0x39,0x89,0x98,0xC1,0x4D,0x0D,0xED,0xB0,0x2A,0x05,0x37,0x0F,0xB4,0xA5,0xAE,0x5C,0xDC,0x36,0xD0,0x83,0x2F,0x4A,0x71,0x7B,0x03,0xF7,0x38,0x59,0xCD,0xED,0x1E,0xB4,0x6B,0x14,0x35,0xB7,0x6B,0x94,0x99,0x91,0xD5,0xDC,0x26,0x48,0x77,0x4B,0x66,0x71,0x1B,0x21,0xDB,0x2D,0x8A,0xC9,0x6D,0x88,0xFC,0x26,0x28,0x3A,0xB7,0x21,0xF4,0x1F,0xA3,0x65,0xBC,0x02,0x38,0xBB,0x3D,0x8E,0xF0,0x2B,0xE2,0x08,0xB7,0x34,0xFF,0x0F}; const uint8_t spFOUR[] PROGMEM = {0x0C,0x18,0xB6,0x9A,0x01,0xC3,0x75,0x09,0x60,0xD8,0x0E,0x09,0x30,0xA0,0x9B,0xB6,0xA0,0xBB,0xB0,0xAA,0x16,0x4E,0x82,0xEB,0xEA,0xA9,0xFA,0x59,0x49,0x9E,0x59,0x23,0x9A,0x27,0x3B,0x78,0x66,0xAE,0x4A,0x9C,0x9C,0xE0,0x99,0xD3,0x2A,0xBD,0x72,0x92,0xEF,0xE6,0x88,0xE4,0x45,0x4D,0x7E,0x98,0x2D,0x62,0x67,0x37,0xF9,0xA1,0x37,0xA7,0x6C,0x94,0xE4,0xC7,0x1E,0xDC,0x3C,0xA5,0x83,0x1F,0x8B,0xEB,0x52,0x0E,0x0E,0x7E,0x2E,0x4E,0xC7,0x31,0xD2,0x79,0xA5,0x3A,0x0D,0xD9,0xC4,0xFF,0x07}; const uint8_t spFIVE[] PROGMEM = {0x02,0xE8,0x3E,0x8C,0x01,0xDD,0x65,0x08,0x60,0x98,0x4C,0x06,0x34,0x93,0xCE,0x80,0xE6,0xDA,0x9A,0x14,0x6B,0xAA,0x47,0xD1,0x5E,0x56,0xAA,0x6D,0x56,0xCD,0x78,0xD9,0xA9,0x1C,0x67,0x05,0x83,0xE1,0xA4,0xBA,0x38,0xEE,0x16,0x86,0x9B,0xFA,0x60,0x87,0x5B,0x18,0x6E,0xEE,0x8B,0x1D,0x6E,0x61,0xB9,0x69,0x36,0x65,0xBA,0x8D,0xE5,0xE5,0x3E,0x1C,0xE9,0x0E,0x96,0x9B,0x5B,0xAB,0x95,0x2B,0x58,0x6E,0xCE,0xE5,0x3A,0x6A,0xF3,0xB8,0x35,0x84,0x7B,0x05,0xA3,0xE3,0x36,0xEF,0x92,0x19,0xB4,0x86,0xDB,0xB4,0x69,0xB4,0xD1,0x2A,0x4E,0x65,0x9A,0x99,0xCE,0x28,0xD9,0x85,0x71,0x4C,0x18,0x6D,0x67,0x47,0xC6,0x5E,0x53,0x4A,0x9C,0xB5,0xE2,0x85,0x45,0x26,0xFE,0x7F}; const uint8_t spSIX[] PROGMEM = {0x0E,0xD8,0xAE,0xDD,0x03,0x0E,0x38,0xA6,0xD2,0x01,0xD3,0xB4,0x2C,0xAD,0x6A,0x35,0x9D,0xB1,0x7D,0xDC,0xEE,0xC4,0x65,0xD7,0xF1,0x72,0x47,0x24,0xB3,0x19,0xD9,0xD9,0x05,0x70,0x40,0x49,0xEA,0x02,0x98,0xBE,0x42,0x01,0xDF,0xA4,0x69,0x40,0x00,0xDF,0x95,0xFC,0x3F}; const uint8_t spSEVEN[] PROGMEM = {0x02,0xB8,0x3A,0x8C,0x01,0xDF,0xA4,0x73,0x40,0x01,0x47,0xB9,0x2F,0x33,0x3B,0x73,0x5F,0x53,0x7C,0xEC,0x9A,0xC5,0x63,0xD5,0xD1,0x75,0xAE,0x5B,0xFC,0x64,0x5C,0x35,0x87,0x91,0xF1,0x83,0x36,0xB5,0x68,0x55,0xC5,0x6F,0xDA,0x45,0x2D,0x1C,0x2D,0xB7,0x38,0x37,0x9F,0x60,0x3C,0xBC,0x9A,0x85,0xA3,0x25,0x66,0xF7,0x8A,0x57,0x1C,0xA9,0x67,0x56,0xCA,0x5E,0xF0,0xB2,0x16,0xB2,0xF1,0x89,0xCE,0x8B,0x92,0x25,0xC7,0x2B,0x33,0xCF,0x48,0xB1,0x99,0xB4,0xF3,0xFF}; const uint8_t spEIGHT[] PROGMEM = {0xC3,0x6C,0x86,0xB3,0x27,0x6D,0x0F,0xA7,0x48,0x99,0x4E,0x55,0x3C,0xBC,0x22,0x65,0x36,0x4D,0xD1,0xF0,0x32,0xD3,0xBE,0x34,0xDA,0xC3,0xEB,0x82,0xE2,0xDA,0x65,0x35,0xAF,0x31,0xF2,0x6B,0x97,0x95,0xBC,0x86,0xD8,0x6F,0x82,0xA6,0x73,0x0B,0xC6,0x9E,0x72,0x99,0xCC,0xCB,0x02,0xAD,0x3C,0x9A,0x10,0x60,0xAB,0x62,0x05,0x2C,0x37,0x84,0x00,0xA9,0x73,0x00,0x00,0xFE,0x1F}; const uint8_t spNINE[] PROGMEM = {0xCC,0xA1,0x26,0xBB,0x83,0x93,0x18,0xCF,0x4A,0xAD,0x2E,0x31,0xED,0x3C,0xA7,0x24,0x26,0xC3,0x54,0xF1,0x92,0x64,0x8B,0x8A,0x98,0xCB,0x2B,0x2E,0x34,0x53,0x2D,0x0E,0x2F,0x57,0xB3,0x0C,0x0D,0x3C,0xBC,0x3C,0x4C,0x4B,0xCA,0xF4,0xF0,0x72,0x0F,0x6E,0x49,0x53,0xCD,0xCB,0x53,0x2D,0x35,0x4D,0x0F,0x2F,0x0F,0xD7,0x0C,0x0D,0x3D,0xBC,0xDC,0x4D,0xD3,0xDD,0xC2,0xF0,0x72,0x52,0x4F,0x57,0x9B,0xC3,0xAB,0x89,0xBD,0x42,0x2D,0x0F,0xAF,0x5A,0xD1,0x71,0x91,0x55,0xBC,0x2C,0xC5,0x3B,0xD8,0x65,0xF2,0x82,0x94,0x18,0x4E,0x3B,0xC1,0x73,0x42,0x32,0x33,0x15,0x45,0x4F,0x79,0x52,0x6A,0x55,0xA6,0xA3,0xFF,0x07}; const uint8_t spPAUSE1[] PROGMEM = {0x00,0x00,0x00,0x00,0xFF,0x0F}; int troll = 0; int ones = 0; int tens = 0; void setup() { Serial.begin(9600); randomSeed(analogRead(0)); CircuitPlayground.begin(); } void loop() { CircuitPlayground.setBrightness((CircuitPlayground.lightSensor()+4)/4); //variable neopixel birghtness based on current light level if (CircuitPlayground.slideSwitch()) { if (CircuitPlayground.leftButton()) {tossd100();} if (CircuitPlayground.rightButton()) {tossd20();} } else { if (CircuitPlayground.leftButton()) {tossd12();} if (CircuitPlayground.rightButton()) {tossd06();} } } void tossd100() { // function for d100 troll = random(0,99); prepthrow(troll); } void tossd20() { // function for d20 troll = random(1,21); prepthrow(troll); } void tossd12() { // function for d12 troll = random(1,13); prepthrow(troll); } void tossd06() { // function for d6 troll = random(1,7); prepthrow(troll); } void prepthrow(int troll) { // function to take the roll and parse it to tens and ones Serial.println(" "); // print throw results to the console Serial.print("Throw was a "); Serial.print(troll); ones=troll % 10; tens=troll / 10; showtoss(ones,tens); } void showtoss(int ones,int tens) { // function to display the results on the neopixels Serial.print(" tens-"); // print the tens and ones breakdown to console Serial.print(tens); Serial.print(" ones-"); Serial.print(ones); CircuitPlayground.clearPixels(); CircuitPlayground.playTone((ones*100)+1, 50); // attemped to make it sound like dice being rolled CircuitPlayground.speaker.end(); if (!CircuitPlayground.leftButton() && !CircuitPlayground.rightButton()){ speakroll(tens); speakroll(ones); } if (ones==tens){ CircuitPlayground.setPixelColor(tens, 5, 255, 5); // if ones and tens are the same show as green } else { CircuitPlayground.setPixelColor(ones, 5, 5, 255); // show ones as blue CircuitPlayground.setPixelColor(tens, 255, 5, 5); } // show tens as red } void speakroll(int digit) { switch (digit) { case 0: CircuitPlayground.speaker.say(spZERO); break; case 1: CircuitPlayground.speaker.say(spONE); break; case 2: CircuitPlayground.speaker.say(spTWO); break; case 3: CircuitPlayground.speaker.say(spTHREE); break; case 4: CircuitPlayground.speaker.say(spFOUR); break; case 5: CircuitPlayground.speaker.say(spFIVE); break; case 6: CircuitPlayground.speaker.say(spSIX); break; case 7: CircuitPlayground.speaker.say(spSEVEN); break; case 8: CircuitPlayground.speaker.say(spEIGHT); break; case 9: CircuitPlayground.speaker.say(spNINE); break; default: CircuitPlayground.speaker.end(); break; } CircuitPlayground.speaker.say(spPAUSE1); CircuitPlayground.speaker.end(); }
-
The User Manual
08/15/2016 at 04:25 • 0 commentsUser Manual
Select the type of die you would like to throw by putting the Select Switch in the proper position and then pressing the proper ButtonSelect Switch + Left Button d100 (0-99) Right Button d20 (1-20)
Select Switch - Left Button d12 (1-12) Right Button d06 (1-6)
You can hold down the Button for as long as you want. Dance to the sound of the bones rolling.
Release the Button and your results will show on the Circuit Playground as two (or one) lit NeoPixels
Red=Tens Place (0-9)
Blue=Ones Place (0-9)
Green=Tens and Ones are the same (00,11,22,33,44,55,66,77,88,99)
The NeoPixels are arranged from 0 - 9 . If you are holding your Circuit Playground with the USB port facing Up
0 is the top left NeoPixel closest to the USB port
1 is to the left of that
..
4 is the bottom let NeoPixel closest to the Battery Jack
5 is the bottom right NeoPixel closest to the Battery Jack
..
9 is the top tight NeoPixel closest to the USB port -
3 inch Button Template
08/15/2016 at 04:15 • 0 comments -
One Day - One Project - More Coffee
08/15/2016 at 04:13 • 0 commentsLast night the idea was floated to make a Dice Roller on the Circuit Playground. This morning we took it up...
- What started as a d6 tosser grew to multiple dice type thanks to the switch and two buttons on the CP.
- Random gen needs some work, had to add to the range.
- Use Select switch and Buttons to select the dice type
- Switch + and Left Button is a d100
- Switch + and Right Button is a d20
- Switch - and Left Button is a d12
- Switch - and Right Button is a d6
- Working out the display took some iterating.
- 2 digits, 2 neopixels
- Red for 10's
- Blue for 1's
- Green if it is the same for both
- 2 digits, 2 neopixels
- Needed sound. Tried to get it to sound like dice being shaken...which yeah...it is what it is.
- Hey look, a light sensors. Lets make the Neopixels dim or brighten based on the surrounding light levels.
- Lets mount it to a 3inch custom button. We have a button maker so why not.
- Created a 3inch button template with numbers in the right place
- added an old school rpg pic in the background
- Put a scaled img of the CP on the button face so placement is easier
- Little lipo fits on the back
- Using double sided tape to hold all parts down for now.
- Created a 3inch button template with numbers in the right place
- What started as a d6 tosser grew to multiple dice type thanks to the switch and two buttons on the CP.