• 1
    Sending All PCBs to Print

    This project requires PCBs as this circuits are too complex for wiring with UEW. There are a total of 3 PCBs required for this build. Two of them are designed to be stacked on top of each other and the other one is the main controller that require double side soldering / reflow.

    From the front to the back side are the

    1. LED matrix display module with driver ICs
    2. Stepper motor driver ICs with shift register, and FFC connectors for MCU connection
    3. MCU board, which contains the battery charging and boosting to 5V, USB to UART programming interface (via type C) and the main MCU (ESP32E) with SD card (eMMC) as external storage.

    All 3 PCBs are printed using 1mm FR4 to save space.



  • 2
    Soldering and Assembling the Display Module

    Let start with the display module. The display module consists of 8 MAX7219 driver IC and 8 LED dot matrix display. The circuit of this module is identical to those commonly available LED dot matrix modules with 8 units in series.

    However, as we are using the 1.95mm LED matrix module here, the relative size of the LED matrix is much smaller than those in the 3mm modules. That is why it is recommended that if you want to hand solder this, make sure you solder it module by module instead of face by face. Which means, you would want to solder one driver IC, then one LED dot matrix module, test it with some code on your MCU and if it works, solder the next set. This helps make sure there are no shots or issue with the soldering, as the IC and the pins of the matrix module is so close, after you soldered the 2nd row of the module, it is pretty much impossible to fix the soldering issue on the first row.



  • 3
    Glue Nuts Onto the Back of the Driver Board and Install Switch

    Before soldering the board,you can take the chance to glue 3 x M2 nuts on the back of the driver board. This will help with the assembly process later on. After the screws are attached and glues are dried up, you can now install the switch. The switch is held in place with 2 x M2 x 5mm srews on both side of the 3D printed mount as shown in the last photo.